Specialist Osmia bees forage indiscriminately among hybridizing Balsamorhiza floral hosts

Taxa

TitleSpecialist Osmia bees forage indiscriminately among hybridizing Balsamorhiza floral hosts
Publication TypeJournal Article
Year of Publication2011
AuthorsCane, J.
Volume167
Issue1
Pagination107 - 116
Date Published2011/09/01/
ISBN Number0029-8549
KeywordsASTERACEAE, BALSAMORHIZA, BEHAVIOR-FORAGING, CONSTANCY, HYBRIDIZATION, Megachilidae, OLIGOLECTY, OSMIA, POLLEN FLOW, STATISTICS
Abstract

Pollinators, even floral generalists (=polyleges), typically specialize during individual foraging bouts, infrequently switching between floral hosts. Such transient floral constancy restricts pollen flow, and thereby gene flow, to conspecific flowers in mixed plant communities. Where incipient flowering species meet, however, weak cross-fertility and often similar floral traits can yield mixed reproductive outcomes among pollinator-dependent species. In these cases, floral constancy by polyleges sometimes serves as an ethological mating barrier. More often, their foraging infidelities instead facilitate host introgression and hybridization. Many other bee species are oligolectic (taxonomic specialists for pollen). Oligoleges could be more discriminating connoisseurs than polyleges when foraging among their limited set of related floral hosts. If true, greater foraging constancy might ensue, contributing to positive assortative mating and disruptive selection, thereby facilitating speciation among their interfertile floral hosts. To test this Connoisseur Hypothesis, nesting females of two species of oligolectic Osmia bees were presented with randomized mixed arrays of flowers of two sympatric species of their pollen host, Balsamorhiza, a genus known for hybridization. In a closely spaced grid, the females of both species preferred the larger flowered B. macrophylla, evidence for discrimination. However, both species' females showed no floral constancy whatsoever during their individual foraging bouts, switching randomly between species proportional to their floral preference. In a wider spaced array in which the bouquets reflected natural plant spacing, foraging oligolectic bees often transferred pollen surrogates (fluorescent powders) both between conspecific flowers (geitonogamy and xenogamy) and between the two Balsamorhiza species. The Connoisseur Hypothesis was therefore rejected. Foraging infidelity by these oligolectic Osmia bees will contribute to introgression and hybridization where interfertile species of Balsamorhiza meet and flower together. A literature review reveals that other plant genera whose species hybridize also attract numerous oligolectic bees, providing independent opportunities to test the generality of this conclusion.

URLhttp://dx.doi.org/10.1007/s00442-011-1977-1
Refereed DesignationRefereed